A Model-Driven Approach for Solving the Software Component Allocation Problem

Author:

Al-Azzoni IssamORCID,Blank Julian,Petrović NenadORCID

Abstract

The underlying infrastructure paradigms behind the novel usage scenarios and services are becoming increasingly complex—from everyday life in smart cities to industrial environments. Both the number of devices involved and their heterogeneity make the allocation of software components quite challenging. Despite the enormous flexibility enabled by component-based software engineering, finding the optimal allocation of software artifacts to the pool of available devices and computation units could bring many benefits, such as improved quality of service (QoS), reduced energy consumption, reduction of costs, and many others. Therefore, in this paper, we introduce a model-based framework that aims to solve the software component allocation problem (CAP). We formulate it as an optimization problem with either single or multiple objective functions and cover both cases in the proposed framework. Additionally, our framework also provides visualization and comparison of the optimal solutions in the case of multi-objective component allocation. The main contributions introduced in this paper are: (1) a novel methodology for tackling CAP-alike problems based on the usage of model-driven engineering (MDE) for both problem definition and solution representation; (2) a set of Python tools that enable the workflow starting from the CAP model interpretation, after that the generation of optimal allocations and, finally, result visualization. The proposed framework is compared to other similar works using either linear optimization, genetic algorithm (GA), and ant colony optimization (ACO) algorithm within the experiments based on notable papers on this topic, covering various usage scenarios—from Cloud and Fog computing infrastructure management to embedded systems, robotics, and telecommunications. According to the achieved results, our framework performs much faster than GA and ACO-based solutions. Apart from various benefits of adopting a multi-objective approach in many cases, it also shows significant speedup compared to frameworks leveraging single-objective linear optimization, especially in the case of larger problem models.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3