Model-Driven Approach to Fading-Aware Wireless Network Planning Leveraging Multiobjective Optimization and Deep Learning

Author:

Krstić Dragana1ORCID,Petrović Nenad1ORCID,Al-Azzoni Issam2ORCID

Affiliation:

1. University of Niš, Faculty of Electronic Engineering, Niš, Serbia

2. Department of Software Engineering and Computer Science, Al Ain University, Al Ain, UAE

Abstract

Efficient resource planning is recognized as one of the key enablers making the large-scale deployment of next-generation wireless networks available for mass usage. Modelling, planning, and software simulation tools reduce both the time needed and costs of their tuning and realization. In this paper, we propose a model-driven framework for proactive network planning relying on synergy of deep learning and multiobjective optimization. The predictions about service demand and energy consumption are taken into account. Also, the impact of degradations resulting from fading and cochannel interference (CCI) effects is also considered. The optimization task is treated as a component allocation problem (CAP) aiming to find the best possible base station allocation for the considered smart city locations with respect to performance and service demand constraints. The goal is to maximize Quality of Service (QoS) while keeping the costs and energy consumption as low as possible. The adoption of a model-driven approach in combination with model-to-model transformations and automated code generation does not only reduce the complexity, making experimentation more rapid and convenient at the same time, but also increase the overall reusability and expandability of the planning tool. According to the obtained results, the proposed solution seems to be promising not only due to achieved benefits but also regarding the execution time, which is shorter than that achieved in our previous works, especially for larger distances. Further, we adopt model-based representation of handover strategies within the planning tool, enabling examination of the dynamic behavior of user-created plan, which is not exploited in other similar works. The main contributions of the paper are (1) wireless network planning (WNP) metamodel, a modelling notation for network plans; (2) model-to-model transformation for conversion of WNP to generalized CAP metamodel; (3) prediction problem (PP) metamodel, high-level abstraction for representation of prediction-related regression and classification problems; (4) code generator that creates PyTorch neural network from PP representation; (5) service demand and energy consumption prediction modules performing regression; (6) multiobjective optimization model for base station allocation; (7) Handover Strategy (HS) metamodel used for description of dynamic aspects and adaptability relevant to network planning.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3