Affiliation:
1. University of Niš, Faculty of Electronic Engineering, Niš, Serbia
2. Department of Software Engineering and Computer Science, Al Ain University, Al Ain, UAE
Abstract
Efficient resource planning is recognized as one of the key enablers making the large-scale deployment of next-generation wireless networks available for mass usage. Modelling, planning, and software simulation tools reduce both the time needed and costs of their tuning and realization. In this paper, we propose a model-driven framework for proactive network planning relying on synergy of deep learning and multiobjective optimization. The predictions about service demand and energy consumption are taken into account. Also, the impact of degradations resulting from fading and cochannel interference (CCI) effects is also considered. The optimization task is treated as a component allocation problem (CAP) aiming to find the best possible base station allocation for the considered smart city locations with respect to performance and service demand constraints. The goal is to maximize Quality of Service (QoS) while keeping the costs and energy consumption as low as possible. The adoption of a model-driven approach in combination with model-to-model transformations and automated code generation does not only reduce the complexity, making experimentation more rapid and convenient at the same time, but also increase the overall reusability and expandability of the planning tool. According to the obtained results, the proposed solution seems to be promising not only due to achieved benefits but also regarding the execution time, which is shorter than that achieved in our previous works, especially for larger distances. Further, we adopt model-based representation of handover strategies within the planning tool, enabling examination of the dynamic behavior of user-created plan, which is not exploited in other similar works. The main contributions of the paper are (1) wireless network planning (WNP) metamodel, a modelling notation for network plans; (2) model-to-model transformation for conversion of WNP to generalized CAP metamodel; (3) prediction problem (PP) metamodel, high-level abstraction for representation of prediction-related regression and classification problems; (4) code generator that creates PyTorch neural network from PP representation; (5) service demand and energy consumption prediction modules performing regression; (6) multiobjective optimization model for base station allocation; (7) Handover Strategy (HS) metamodel used for description of dynamic aspects and adaptability relevant to network planning.
Funder
Ministry of Education, Science and Technological Development of the Republic of Serbia
Subject
General Engineering,General Mathematics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献