Research on the Blades and Performance of Semi-Submersible Wind Turbines with Different Capacities

Author:

Cui Jiaping1ORCID,Cao Zhigang2,Lyu Pin2ORCID,Peng Huaiwu3,Li Quankun1,Ma Ruixian1,Liu Yingming4

Affiliation:

1. School of Power and Energy, Northwestern Polytechnical University, Xi’an 710129, China

2. Goldwind Science & Technology Co., Ltd., Urumqi 830026, China

3. Power China Northwest Engineering Co., Ltd., Xi’an 710065, China

4. School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China

Abstract

With the gradual increase in the maturity of wind energy technology, floating offshore wind turbines have progressively moved from small-capacity demonstrations to large-capacity commercial applications. As a direct component of wind turbines used to capture wind energy, an increase in the blade length directly leads to an increase in blade flexibility and a decrease in aerodynamic performance. Furthermore, if the floater has an additional six degrees of freedom, the movement and load of the blade under the combined action of wind and waves are more complicated. In this work, two types of semi-submersible wind turbines with different capacities are used as the research objects, and the load and motion characteristics of the blades of these floating offshore wind turbines are studied. Through the analysis of the simulation data, the following conclusions are drawn: with the increase in the capacity of the wind turbine, the flexible deformation of the blade increases, the movement range of the blade tip becomes larger, the blade root load increases, and the power fluctuation is more obvious. Compared with the bottom-fixed wind turbine, the flexible blade deformation of the floating offshore wind turbine is smaller; however, the blade root load is more dispersed, and the power output is more unstable and lower.

Funder

National Key Research and Development Program

National Science Foundation of China

Innovation Capability Support Program of Shaanxi

China Scholarship Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3