Advanced Pressure Compensation in High Accuracy NDIR Sensors for Environmental Studies

Author:

Gaynullin Bakhram12ORCID,Hummelgård Christine1,Mattsson Claes2ORCID,Thungström Göran2,Rödjegård Henrik1

Affiliation:

1. Senseair AB, 824 71 Delsbo, Sweden

2. Department of Engineering, Mathematics and Science Education, Mid Sweden University, 851 70 Sundsvall, Sweden

Abstract

Measurements of atmospheric gas concentrations using of NDIR gas sensors requires compensation of ambient pressure variations to achieve reliable result. The extensively used general correction method is based on collecting data for varying pressures for a single reference concentration. This one-dimensional compensation approach is valid for measurements carried out in gas concentrations close to reference concentration but will introduce significant errors for concentrations further away from the calibration point. For applications, requiring high accuracy, collecting, and storing calibration data at several reference concentrations can reduce the error. However, this method will cause higher demands on memory capacity and computational power, which is problematic for cost sensitive applications. We present here an advanced, but practical, algorithm for compensation of environmental pressure variations for relatively low-cost/high resolution NDIR systems. The algorithm consists of a two-dimensional compensation procedure, which widens the valid pressure and concentrations range but with a minimal need to store calibration data, compared to the general one-dimensional compensation method based on a single reference concentration. The implementation of the presented two-dimensional algorithm was verified at two independent concentrations. The results show a reduction in the compensation error from 5.1% and 7.3%, for the one-dimensional method, to −0.02% and 0.83% for the two-dimensional algorithm. In addition, the presented two-dimensional algorithm only requires calibration in four reference gases and the storing of four sets of polynomial coefficients used for calculations.

Funder

European Regional Development Fund

Swedish innovation agency Vinnova

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3