A Comparison of the Influence of Vegetation Cover on the Precision of an UAV 3D Model and Ground Measurement Data for Archaeological Investigations: A Case Study of the Lepelionys Mound, Middle Lithuania

Author:

Česnulevičius Algimantas,Bautrėnas Artūras,Bevainis Linas,Ovodas Donatas

Abstract

The aim of this research was to conduct a comparative analysis of the precision of ground geodetic data versus the three-dimensional (3D) measurements from unmanned aerial vehicles (UAV), while establishing the impact of herbaceous vegetation on the UAV 3D model. Low (up to 0.5 m high) herbaceous vegetation can impede the establishment of the anthropogenic roughness of the surface. The identification of minor surface alterations, which enables the determination of their anthropogenic origin, is of utmost importance in archaeological investigations. Vegetation cover is regarded as one of the factors influencing the identification of such minor forms of relief. The research was conducted on the Lepelionys Mound (Prienai District Municipality, Lithuania). Ground measurements were obtained using Trimble GPS, and UAV “Inspire 1” was used for taking aerial photographs. Following the data from the ground measurements and aerial photographs, large scale surface maps were drawn and the errors in the measurement of the position of the isolines were compared. The results showed that the largest errors in the positional measurements of fixed objects were conditioned by the height of grass. Grass with a height of up to 0.1 m resulted in discrepancies of up to 0.5 m, whereas grass that was up to 0.5 m high led to discrepancies up to 1.3 m high.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference56 articles.

1. Soil and crop marks in the recognition of archaeological sites by air photography;Jones,1975

2. Image-based 3D Modelling: A Review

3. Satellite Remote Sensing for Archaeology;Parcaks,2009

4. Investigations on the accuracy of the navigation data of unmanned aerial vehicles using the example of the system microcopter;Bäumker;Arch. Photogramm. Remote Sens. Spat. Inf. Sci.,2011

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3