Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles

Author:

Tripathy YashrajORCID,McGordon Andrew,Barai Anup

Abstract

Today’s market leading electric vehicles, driven on typical UK motorways, have real-world range estimation inaccuracy of up to 27%, at around 10 °C outside temperature. The inaccuracy worsens for city driving or lower outside temperature. The reliability of range estimation largely depends on the accuracy of the battery’s underlying state estimators, e.g., state-of-charge and state-of-energy. This is affected by accuracy of the models embedded in the battery management system. The performance of these models fundamentally depends on experimentally obtained parameterisation and validation data. These experiments are mostly performed within thermal chambers, which maintain pre-set temperatures using forced air convection. Although these setups claim to maintain isothermal test conditions, they rarely do so. In this paper, we show that this is potentially the root-cause for deterioration of range estimation at low temperatures. This is because, while such setups produce results comparable to isothermal conditions at higher temperatures (25 °C), they fail to achieve isothermal conditions at sub-zero temperatures. Employing an immersed oil-cooled experimental setup, which can create close-to isothermal conditions, we show battery state estimation can be improved by reducing error from 49.3% to 11.7% at −15 °C. These findings provide a way forward towards improving range estimation in cold weather conditions.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference51 articles.

1. Perspectives of automotive battery R&D in China, Germany, Japan, and the USA;Li;J. Power Sources,2018

2. Topological Overview of Hybrid Electric and Fuel Cell Vehicular Power System Architectures and Configurations

3. Lithium and Cobalt: A Tale of Two Commodities|McKinseyhttps://www.mckinsey.com/industries/metals-and-mining/our-insights/lithium-and-cobalt-a-tale-of-two-commodities

4. Rapidly falling costs of battery packs for electric vehicles

5. Automotive Lithium-Ion Batteries

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3