Optimizing Predictor Variables in Artificial Neural Networks When Forecasting Raw Material Prices for Energy Production

Author:

Matyjaszek Marta,Fidalgo Valverde GregorioORCID,Krzemień Alicja,Wodarski Krzysztof,Riesgo Fernández PedroORCID

Abstract

This paper applies a heuristic approach to optimize the predictor variables in artificial neural networks when forecasting raw material prices for energy production (coking coal, natural gas, crude oil and coal) to achieve a better forecast. Two goals are (1) to determine the optimum number of time-delayed terms or past values forming the lagged variables and (2) to improve the forecast accuracy by adding intrinsic signals to the lagged variables. The conclusions clearly are in opposition to the actual scientific literature: when addressing the lagged variable size, the results do not confirm relationships among their size, representativeness and estimation accuracy. It is also possible to verify an important effect of the results on the lagged variable size. Finally, adding the order in the time series of the lagged variables to form the predictor variables improves the forecast accuracy in most cases.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference45 articles.

1. A Review of the Use of Artificial Neural Network Models for Energy and Reliability Prediction. A Study of the Solar PV, Hydraulic and Wind Energy Sources

2. Forecasting of optimum raw material inventory level using artificial neural network;Ali;Int. J. Oper. Quant. Manag.,2011

3. Computational modeling of crude oil price forecasting: a review of two decades of research;Gabralla;Int. J. Comput. Inf. Syst. Ind. Manag. Appl.,2013

4. Forecasting the volatility of stock price index

5. Day-ahead electricity price forecasting via the application of artificial neural network based models

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecasts of thermal coal prices through Gaussian process regressions;Ironmaking & Steelmaking: Processes, Products and Applications;2024-07-23

2. Dynamic model averaging-based procurement optimization of prefabricated components;Neural Computing and Applications;2023-06-15

3. REAL-TIME FORECASTING OF KEY COKING COAL QUALITY PARAMETERS USING NEURAL NETWORKS AND ARTIFICIAL INTELLIGENCE;Rudarsko-geološko-naftni zbornik;2023

4. Feasibility of copper mines in Jordan;Arabian Journal of Geosciences;2022-12-29

5. Thermal coal price forecasting via the neural network;Intelligent Systems with Applications;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3