A Review of the Use of Artificial Neural Network Models for Energy and Reliability Prediction. A Study of the Solar PV, Hydraulic and Wind Energy Sources

Author:

Ferrero Bermejo JesúsORCID,Gómez Fernández Juan F.ORCID,Olivencia Polo FernandoORCID,Crespo Márquez AdolfoORCID

Abstract

The generation of energy from renewable sources is subjected to very dynamic changes in environmental parameters and asset operating conditions. This is a very relevant issue to be considered when developing reliability studies, modeling asset degradation and projecting renewable energy production. To that end, Artificial Neural Network (ANN) models have proven to be a very interesting tool, and there are many relevant and interesting contributions using ANN models, with different purposes, but somehow related to real-time estimation of asset reliability and energy generation. This document provides a precise review of the literature related to the use of ANN when predicting behaviors in energy production for the referred renewable energy sources. Special attention is paid to describe the scope of the different case studies, the specific approaches that were used over time, and the main variables that were considered. Among all contributions, this paper highlights those incorporating intelligence to anticipate reliability problems and to develop ad-hoc advanced maintenance policies. The purpose is to offer the readers an overall picture per energy source, estimating the significance that this tool has achieved over the last years, and identifying the potential of these techniques for future dependability analysis.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference109 articles.

1. Global Energy Transformation: A Roadmap to 2050https://www.irena.org//media/Files/IRENA/Agency/Publication/2018/Apr/IRENA_Report_GET_2018.pdf

2. Renewables Global Status Report 2018http://www.ren21.net/gsr-2018/

3. Renewables Information 2018https://webstore.iea.org/renewables-information-2018

4. Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting

5. Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3