An Hourglass-Shaped Wireless and Passive Magnetoelastic Sensor with an Improved Frequency Sensitivity for Remote Strain Measurements

Author:

Ren LiminORCID,Cong Moyue,Tan YisongORCID

Abstract

The conventional magnetoelastic resonant sensor suffers from a low detecting sensitivity problem. In this study, an hourglass-shaped magnetoelastic resonant sensor was proposed, analyzed, fabricated, and tested. The hourglass-shaped magnetoelastic resonant sensor was composed of an hourglass and a narrow ribbon in the middle. The hourglass and the narrow ribbon increased the detection sensitivity by reducing the connecting stress. The resonant frequency of the sensor was investigated by the finite element method. The proposed sensor was fabricated and experiments were carried out. The tested resonance frequency agreed well with the simulated one. The maximum trust sensitivity of the proposed sensor was 37,100 Hz/strain. The power supply and signal transmission of the proposed sensor were fulfilled via magnetic field in a wireless and passive way due to the magnetostrictive effect. Parametric studies were carried out to investigate the influence of the hourglass shape on the resonant frequency and the output voltage. The hourglass-shaped magnetoelastic resonant sensor shows advantages of high sensitivity, a simple structure, easy fabrication, passiveness, remoteness, and low cost.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3