Evaluating Contact-Less Sensing and Fault Diagnosis Characteristics in Vibrating Thin Cantilever Beams with a MetGlas® 2826MB Ribbon

Author:

Sultana Robert-Gabriel1,Davrados Achilleas1,Dimogianopoulos Dimitrios1ORCID

Affiliation:

1. Department of Industrial Design and Production Engineering, University of West Attica, 250 Thivon and P. Ralli, 12241 Athens, Greece

Abstract

The contact-less sensing and fault diagnosis characteristics induced by fixing short Metglas® 2826MB ribbons onto the surface of thin cantilever polymer beams are examined and statistically evaluated in this study. Excitation of the beam’s free end generates magnetic flux from the vibrating ribbon (fixed near the clamp side), which, via a coil suspended above the ribbon surface, is recorded as voltage with an oscilloscope. Cost-efficient design and operation are key objectives of this setup since only conventional equipment (coil, oscilloscope) is used, whereas filtering, amplification and similar circuits are absent. A statistical framework for extending past findings on the relationship between spectral changes in voltage and fault occurrence is introduced. Currently, different levels of beam excitation (within a frequency range) are shown to result in statistically different voltage spectral changes (frequency shifts). The principle is also valid for loads (faults) of different magnitudes and/or locations on the beam for a given excitation. Testing with either various beam excitation frequencies or different loads (magnitude/locations) at a given excitation demonstrates that voltage spectral changes are statistically mapped onto excitation levels or occurrences of distinct faults (loads). Thus, conventional beams may cost-efficiently acquire contact-less sensing and fault diagnosis capabilities using limited hardware/equipment.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3