Deep Churn Prediction Method for Telecommunication Industry

Author:

Saha Lewlisa1ORCID,Tripathy Hrudaya Kumar1ORCID,Gaber Tarek23ORCID,El-Gohary Hatem4ORCID,El-kenawy El-Sayed M.5ORCID

Affiliation:

1. School of Computer Engineering, Kalinga Institute of Industrial Technology, Bhubaneswar 751024, India

2. Faculty of Computers and Informatics, Suez Canal University, Ismailia 41522, Egypt

3. School of Science, Engineering, and Environment, University of Salford, Salford M5 4WT, UK

4. College of Business and Economics, Qatar University, Doha 2713, Qatar

5. Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt

Abstract

Being able to predict the churn rate is the key to success for the telecommunication industry. It is also important for the telecommunication industry to obtain a high profit. Thus, the challenge is to predict the churn percentage of customers with higher accuracy without comprising the profit. In this study, various types of learning strategies are investigated to address this challenge and build a churn predication model. Ensemble learning techniques (Adaboost, random forest (RF), extreme randomized tree (ERT), xgboost (XGB), gradient boosting (GBM), and bagging and stacking), traditional classification techniques (logistic regression (LR), decision tree (DT), and k-nearest neighbor (kNN), and artificial neural network (ANN)), and the deep learning convolutional neural network (CNN) technique have been tested to select the best model for building a customer churn prediction model. The evaluation of the proposed models was conducted using two pubic datasets: Southeast Asian telecom industry, and American telecom market. On both of the datasets, CNN and ANN returned better results than the other techniques. The accuracy obtained on the first dataset using CNN was 99% and using ANN was 98%, and on the second dataset it was 98% and 99%, respectively.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3