Applicability of Transient Electromagnetic Surveys to Permafrost Imaging in Arctic West Siberia

Author:

Buddo IgorORCID,Sharlov Maxim,Shelokhov Ivan,Misyurkeeva Natalya,Seminsky Igor,Selyaev Vasily,Agafonov Yury

Abstract

Detection of faults and other zones of weakness in shallow permafrost to a few hundreds of meters is extremely important for ensuring the safety during the production and transportation of fuels (oil and gas). The construction of line facilities (power lines and pipelines) should be preceded by detailed surveys in order to localize major areas of potential hazard. Furthermore, reliable geophysical methods are necessary for exploration of gas hydrates. This research aims at proving that induction-based electromagnetic surveys are applicable for permafrost studies and at finding new evidence for the similarity and difference of the permafrost structure in different regions of Northern Siberia. TEM curves are collected in several regions of Northern Siberia with continuous, mostly continuous, and discontinuous permafrost. Transient electromagnetic (TEM) surveys performed in the Russian Arctic image the permafrost structure to a depth of 500 m. The data are acquired with telemetric systems that allow varying the survey design and loop configuration. Advanced processing tools are used to provide geologically essential information from late-time records, while optimized inversion algorithms are applied to obtain high-quality layered resistivity models. The resulting geoelectric models reveal evident variations in the thickness of highly resistive frozen rocks and the presence of unfrozen patches. The induction surveys, which require no galvanic contact with the earth and no grounding, are inferred to be best suitable for imaging the frozen shallow subsurface. The TEM-based resistivity patterns clearly resolve the permafrost base, as well as the contours of unfrozen zones (taliks), lenses of saline water (cryopegs), gas hydrates, and frost heaving features. The reported results can make basis for the choice of geophysical methods for permafrost studies in such harsh conditions as the Russian Arctic. Furthermore, the presented resistivity patterns can make reference for future studies of permafrost in Northern Siberia.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference50 articles.

1. Additional studies in petroleum exploration and development: From permafrost mapping to groundwater prospecting for drilling and operation of wells;Rybalchenko;Gazov. Promyshlennost,2020

2. Resistivity surveys for petroleum exploration;Ingerov;Bull. Min. Inst.,2005

3. Transient Electromagnetic (TEM) Soundings for Petroleum Exploration;Korolkov,1987

4. Induction Resistivity Surveys. Student’s Manual;Mogilatov,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3