Imaging Arctic Permafrost: Modeling for Choice of Geophysical Methods

Author:

Buddo IgorORCID,Misyurkeeva NatalyaORCID,Shelokhov Ivan,Chuvilin EvgenyORCID,Chernikh Alexey,Smirnov Alexander

Abstract

Knowledge of permafrost structure, with accumulations of free natural gas and gas hydrates, is indispensable for coping with spontaneous gas emission and other problems related to exploration and production drilling in Arctic petroleum provinces. The existing geophysical methods have different potentialities for imaging the permafrost base and geometry, vertical fluid conduits (permeable zones), taliks, gas pockets, and gas hydrate accumulations in the continental Arctic areas. The synthesis of data on cryological and geological conditions was the basis for a geophysical–geological model of northern West Siberia to a depth of 400 m, which includes modern permafrost, lenses of relict permafrost with hypothetical gas hydrates, and a permeable zone that may be a path for the migration of gas–water fluids. The model was used to model synthetic seismic, electrical resistivity tomography (ERT), and transient electromagnetic (TEM) data, thus testing the advantages and drawbacks of the three methods. Electrical resistivity tomography has insufficient penetration to resolve all features and can run only in the summer season. Seismic surveys have limitations in mapping fluid conduits, though they can image a horizontally layered structure in any season. Shallow transient electromagnetic (sTEM) soundings can image any type of features included into the geological model and work all year round. Thus, the best strategy is to use TEM surveys as the main method, combined with seismic and ERT data. Each specific method is chosen proceeding from economic viability and feasibility in the specific physiographic conditions of mountain and river systems.

Funder

Russian Science Foundation

Government of the Yamal-Nenets Autonomous District

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference74 articles.

1. Geocryology of the USSR Territory;Ershov,1989

2. Gas hydrates in sediments of continents and islands;Yakushev;Ross. Khimicheskii Zhurnal,2003

3. Natural Gas and Gas Hydrates in Permafrost;Yakushev,2009

4. Experimental Study of the Self-Preservation Effect of Gas Hydrates in Frozen Sediments;Chuvilin;Proceedings of the 9th International Conference on Permafrost,2008

5. Dissociation and Self-Preservation of Gas Hydrates in Permafrost

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3