Entropy-Based Anomaly Detection in Household Electricity Consumption

Author:

Moure-Garrido MartaORCID,Campo CelesteORCID,Garcia-Rubio CarlosORCID

Abstract

Energy efficiency is one of the most important current challenges, and its impact at a global level is considerable. To solve current challenges, it is critical that consumers are able to control their energy consumption. In this paper, we propose using a time series of window-based entropy to detect anomalies in the electricity consumption of a household when the pattern of consumption behavior exhibits a change. We compare the accuracy of this approach with two machine learning approaches, random forest and neural networks, and with a statistical approach, the ARIMA model. We study whether these approaches detect the same anomalous periods. These different techniques have been evaluated using a real dataset obtained from different households with different consumption profiles from the Madrid Region. The entropy-based algorithm detects more days classified as anomalous according to context information compared to the other algorithms. This approach has the advantages that it does not require a training period and that it adapts dynamically to changes, except in vacation periods when consumption drops drastically and requires some time for adapting to the new situation.

Funder

Spanish Government

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Realizing the Improvement of the Reliability and Efficiency of Intelligent Electricity Inspection: IAOA-BP Algorithm for Anomaly Detection;Energies;2023-03-25

2. Synthetic Generation of Electrical Consumption Traces in Smart Homes;Proceedings of the International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2022);2022-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3