Testing and Assessing Method for the Resistance of Wood-Plastic Composites to the Action of Destroying Fungi

Author:

Wiejak Anna,Francke BarbaraORCID

Abstract

Durability tests against fungi action for wood-plastic composites are carried out in accordance with European standard ENV 12038, but the authors of the manuscript try to prove that the assessment of the results done according to these methods is imprecise and suffers from a significant error. Fungi exposure is always accompanied by high humidity, so the result of tests made by such method is always burdened with the influence of moisture, which can lead to a wrong assessment of the negative effects of action fungus itself. The manuscript has shown a modification of such a method that separates the destructive effect of fungi from moisture accompanying the test’s destructive effect. The functional properties selected to prove the proposed modification are changes in the mass and bending strength after subsequent environmental exposure. It was found that intensive action of moisture measured in the culture chamber of about (70 ± 5)%, i.e., for 16 weeks, at (22 ± 2) °C, which was the fungi culture, which was accompanying period, led to changes in the mass of the wood-plastic composites, amounting to 50% of the final result of the fungi resistance test, and changes in the bending strength amounting to 30–46% of the final test result. As a result of the research, the correction for assessing the durability of wood-polymer composites to biological corrosion has been proposed. The laboratory tests were compared with the products’ test results following three years of exposure to the natural environment.

Publisher

MDPI AG

Subject

General Materials Science

Reference39 articles.

1. Wood as a Component of Polymer Biocomposites (In Polish: Drewno Jako Składnik Biokompozytów Polimerowych);Prochoń,2017

2. Bacteria, molds, and toxins in water-damaged building materials

3. Emerging fungal threats to animal, plant and ecosystem health

4. Monitoring fungal degradation of E-glass/phenolic fiber reinforced polymer (FRP) composites used in wood reinforcement

5. Global trends in wood-plastic composites (WPC);Eder;Bioplast. Mag.,2013

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3