Role of Anharmonic Interactions for Vibration Density of States in α-Cristobalite

Author:

Huang Yongda,Zhou Jian,Wang Guanjie,Sun ZhimeiORCID

Abstract

The vibrational density of states (VDOS) of solids in the low-energy regime controls the thermal and transport properties of materials, such as heat capacity, heat conduction, free energy and entropy. In α-Cristobalite, the low-frequency part of vibration density of states (VDOS) has many common features with the Boson peak in silica glass of matched densities. Recent theoretical work reported that anharmonic phonon–phonon interactions were critical for the low-frequency part of VDOS in α-Cristobalite. Therefore, it is urgent to identify the role of different anharmonic interactions from first principles. In this paper, we focus on the main peak of the low-frequency part of VDOS in α-Cristobalite. Calculated by our own developed codes and first principles, we find that the quartic anharmonic interaction can increase the frequency of the peak, while the cubic anharmonic can reduce the frequency and change the shape of the peak. Meanwhile, the anharmonic interactions are critical for the temperature effect. Therefore, we calculated the temperature-dependent property of the peak. We find that the frequency of the peak is directly proportional to the temperature. The atomic displacement patterns of different temperatures also confirm the above conclusion. All our calculations converged well. Moreover, our basic results agree well with other published results. Finally, we highlight that our codes offer a general and reliable way to calculate the VDOS with temperature.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3