Modeling of the Free-Surface-Pressurized Flow of a Hydropower System with a Flat Ceiling Tail Tunnel

Author:

Zhou Jianxu,Li Yongfa

Abstract

For a water diversion hydropower system with a flat ceiling tail tunnel with high elevation, during transient states with relatively low tail water levels, free-surface-pressurized flow inevitably appears and its transient characteristics have obvious effects on the system’s operating stability. Using Newton–Raphson linearization in the characteristic implicit format for modeling of the free-surface-pressurized flow in the tail tunnel, the mathematical models for necessary boundary conditions were derived and linear algebraic equations with a band coefficient matrix were grouped for further transient simulation. Then, a unified mathematical model was established for hydraulic transient analysis of the hydropower system with free-surface-pressurized flow. Combined with experimental research and numerical simulation, the wave speed for the free-surface-pressurized flow was experimentally analyzed for further correctness in the unified model, and by comparative analysis the hydraulic characteristics of the free-surface-pressurized flow in the flat ceiling tail tunnel were investigated. It was found that the derived mathematical model can basically represent water behaviors in the water-surface-pressurized flow, the wave speed for the mixed water-surface-pressurized flow can be set to approximately 50m/s, and with this correctness the numerical results are in good agreement with the experimental results. Therefore, the obtained mathematical model combined with an experimental wave speed or a reference wave speed of 50 m/s for the free-surface-pressurized flow is preferable during the design stage of the hydropower system.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3