Identification of Immune Function-Related Subtypes in Cutaneous Melanoma

Author:

Liu Lin,Zhu Junkai,Jin Tong,Huang Mengjia,Chen Yi,Xu LiORCID,Chen Wenxuan,Jiang Bo,Yan FangrongORCID

Abstract

Tumour immunotherapy combined with molecular typing is a new therapy to help select patients. However, molecular typing algorithms related to tumour immune function have not been thoroughly explored. We herein proposed a single sample immune signature network (SING) method to identify new immune function-related subtypes of cutaneous melanoma of the skin. A sample-specific network and tumour microenvironment were constructed based on the immune annotation of cutaneous melanoma samples. Then, the differences and heterogeneity of immune function among different subtypes were analysed and verified. A total of 327 cases of cutaneous melanoma were divided into normal and immune classes; the immune class had more immune enrichment characteristics. After further subdividing the 327 cases into three immune-related subtypes, the degree of immune enrichment in the “high immune subtype” was greater than that in other subtypes. Similar results were validated in both tumour samples and cell lines. Sample-specific networks and the tumour microenvironment based on immune annotation contribute to the mining of cutaneous melanoma immune function-related subtypes. Mutations in B2M and PTEN are considered potential therapeutic targets that can improve the immune response. Patients with a high immune subtype can generally obtain a better immune prognosis effect, and the prognosis may be improved when combined with TGF-β inhibitors.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3