Defining Melanoma Immune Biomarkers—Desert, Excluded, and Inflamed Subtypes—Using a Gene Expression Classifier Reflecting Intratumoral Immune Response and Stromal Patterns

Author:

Mlynska Agata12ORCID,Gibavičienė Jolita1,Kutanovaitė Otilija1,Senkus Linas1,Mažeikaitė Julija1ORCID,Kerševičiūtė Ieva3ORCID,Maskoliūnaitė Vygantė34ORCID,Rupeikaitė Neda3,Sabaliauskaitė Rasa1ORCID,Gaiževska Justina1,Suveizdė Karolina1,Kraśko Jan Aleksander12,Dobrovolskienė Neringa1,Paberalė Emilija13,Žymantaitė Eglė1,Pašukonienė Vita12

Affiliation:

1. National Cancer Institute, LT-08406 Vilnius, Lithuania

2. Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania

3. Life Sciences Center, Vilnius University, LT-01513 Vilnius, Lithuania

4. National Center of Pathology, LT-08406 Vilnius, Lithuania

Abstract

The spatial distribution of tumor infiltrating lymphocytes (TILs) defines several histologically and clinically distinct immune subtypes—desert (no TILs), excluded (TILs in stroma), and inflamed (TILs in tumor parenchyma). To date, robust classification of immune subtypes still requires deeper experimental evidence across various cancer types. Here, we aimed to investigate, define, and validate the immune subtypes in melanoma by coupling transcriptional and histological assessments of the lymphocyte distribution in tumor parenchyma and stroma. We used the transcriptomic data from The Cancer Genome Atlas melanoma dataset to screen for the desert, excluded, and inflamed immune subtypes. We defined subtype-specific genes and used them to construct a subtype assignment algorithm. We validated the two-step algorithm in the qPCR data of real-world melanoma tumors with histologically defined immune subtypes. The accuracy of a classifier encompassing expression data of seven genes (immune response-related: CD2, CD53, IRF1, and CD8B; and stroma-related: COL5A2, TNFAIP6, and INHBA) in a validation cohort reached 79%. Our findings suggest that melanoma tumors can be classified into transcriptionally and histologically distinct desert, excluded, and inflamed subtypes. Gene expression-based algorithms can assist physicians and pathologists as biomarkers in the rapid assessment of a tumor immune microenvironment while serving as a tool for clinical decision making.

Funder

European Social Fund

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3