Application of Density Plots and Time Series Modelling to the Analysis of Nitrogen Dioxides Measured by Low-Cost and Reference Sensors in Urban Areas

Author:

Munir SaidORCID,Mayfield Martin

Abstract

Temporal variability of NO2 concentrations measured by 28 Envirowatch E-MOTEs, 13 AQMesh pods, and eight reference sensors (five run by Sheffield City Council and three run by the Department for Environment, Food and Rural Affairs (DEFRA)) was analysed at different time scales (e.g., annual, weekly and diurnal cycles). Density plots and time variation plots were used to compare the distributions and temporal variability of NO2 concentrations. Long-term trends, both adjusted and non-adjusted, showed significant reductions in NO2 concentrations. At the Tinsley site, the non-adjusted trend was −0.94 (−1.12, −0.78) µgm−3/year, whereas the adjusted trend was −0.95 (−1.04, −0.86) µgm−3/year. At Devonshire Green, the non-adjusted trend was −1.21 (−1.91, −0.41) µgm−3/year and the adjusted trend was −1.26 (−1.57, −0.83) µgm−3/year. Furthermore, NO2 concentrations were analysed employing univariate linear and nonlinear time series models and their performance was compared with a more advanced time series model using two exogenous variables (NO and O3). For this purpose, time series data of NO, O3 and NO2 were obtained from a reference site in Sheffield, which were more accurate than the measurements from low-cost sensors and, therefore, more suitable for training and testing the model. In this article, the three main steps used for model development are discussed: (i) model specification for choosing appropriate values for p, d and q, (ii) model fitting (parameters estimation), and (iii) model diagnostic (testing the goodness of fit). The linear auto-regressive integrated moving average (ARIMA) performed better than the nonlinear counterpart; however, its performance in predicting NO2 concentration was inferior to ARIMA with exogenous variables (ARIMAX). Using cross-validation ARIMAX demonstrated strong association with the measured concentrations, with a correlation coefficient of 0.84 and RMSE of 9.90. ARIMAX can be used as an early warning tool for predicting potential pollution episodes in order to be proactive in adopting precautionary measures.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Engineering

Reference48 articles.

1. Air pollution and health

2. World Health Organization, Review of Evidence on Health Aspects of Air Pollution,2013

3. The health effects of air pollution;Walters,2001

4. Effects of air pollution on human health and practical measures for prevention in Iran;Azam;J. Res. Med. Sci.,2016

5. Environmental and Health Impacts of Air Pollution: A Review

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3