Influence of Anomalies on the Models for Nitrogen Oxides and Ozone Series

Author:

Bărbulescu AlinaORCID,Dumitriu Cristian Stefan,Ilie IuliaORCID,Barbeş Sebastian-BarbuORCID

Abstract

Nowadays, observing, recording, and modeling the dynamics of atmospheric pollutants represent actual study areas given the effects of pollution on the population and ecosystems. The existence of aberrant values may influence reports on air quality when they are based on average values over a period. This may also influence the quality of models, which are further used in forecasting. Therefore, correct data collection and analysis is necessary before modeling. This study aimed to detect aberrant values in a nitrogen oxide concentration series recorded in the interval 1 January–8 June 2016 in Timisoara, Romania, and retrieved from the official reports of the National Network for Monitoring the Air Quality, Romania. Four methods were utilized, including the interquartile range (IQR), isolation forest, local outlier factor (LOF) methods, and the generalized extreme studentized deviate (GESD) test. Autoregressive integrated moving average (ARIMA), Generalized Regression Neural Networks (GRNN), and hybrid ARIMA-GRNN models were built for the series before and after the removal of aberrant values. The results show that the first approach provided a good model (from a statistical viewpoint) for the series after the anomalies removal. The best model was obtained by the hybrid ARIMA-GRNN. For example, for the raw NO2 series, the ARIMA model was not statistically validated, whereas, for the series without outliers, the ARIMA(1,1,1) was validated. The GRNN model for the raw series was able to learn the data well: R2 = 76.135%, the correlation between the actual and predicted values (rap) was 0.8778, the mean standard errors (MSE) = 0.177, the mean absolute error MAE = 0.2839, and the mean absolute percentage error MAPE = 9.9786. Still, on the test set, the results were worse: MSE = 1.5101, MAE = 0.8175, rap = 0.4482. For the series without outliers, the model was able to learn the data in the training set better than for the raw series (R2 = 0.996), whereas, on the test set, the results were not very good (R2 = 0.473). The performances of the hybrid ARIMA–GRNN on the initial series were not satisfactory on the test (the pattern of the computed values was almost linear) but were very good on the series without outliers (the correlation between the predicted values on the test set was very close to 1). The same was true for the models built for O3.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3