Microstructure/Mechanical Characterization of Plasma Nitrided Fine-Grain Austenitic Stainless Steels in Low Temperature

Author:

Farghali AbdelrahmanORCID,Aizawa TatsuhikoORCID,Yoshino Tomoaki

Abstract

Fine-grained austenitic stainless steels (FGSS) were plasma nitrided below 700 K to describe their microstructure evolution during the nitrogen supersaturation process and to investigate the post-stressing effect on the microstructure and mechanical properties of nitrided FGSS. Normal- and fine-grained AISI304 plates were nitrided at 623 K and 673 K to investigate the grain size effect on the nitrogen supersaturation process as well as the microstructure evolution during the nitriding process. Fine-grained AISI316 (FGSS316) wires were nitrided at 623 K to demonstrate that their outer surfaces were uniformly nitrided to have the same two-phase, refined microstructure with high nitrogen solute content. This nitrided FGSS316 wire had a core structure where the original FGSS316 core matrix was bound by the nitrided FGSS316 layer. The nitrided wire had higher stiffness, ultimate strength, and elongation in the uniaxial tensile testing than its un-nitrided wires. The core microstructure was refined and homogenized by this applied loading together with an increase of nitrided layer hardness.

Publisher

MDPI AG

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3