Improved Object-Based Estimation of Forest Aboveground Biomass by Integrating LiDAR Data from GEDI and ICESat-2 with Multi-Sensor Images in a Heterogeneous Mountainous Region

Author:

Chen LinORCID,Ren Chunying,Bao Guangdao,Zhang Bai,Wang ZongmingORCID,Liu Mingyue,Man WeidongORCID,Liu Jiafu

Abstract

Accurate and effective mapping of forest aboveground biomass (AGB) in heterogeneous mountainous regions is a huge challenge but an urgent demand for resource managements and carbon storage monitoring. Conventional studies have related the plot-measured or LiDAR-based biomass to remote sensing data using pixel-based approaches. The object-based relationship between AGB and multi-source data from LiDAR, multi-frequency radar, and optical sensors were insufficiently studied. It deserves the further exploration that maps forest AGB using the object-based approach and combines LiDAR data with multi-sensor images, which has the smaller uncertainty of positional discrepancy and local heterogeneity, in heterogeneous mountainous regions. To address the improvement of mapping accuracy, satellite LiDAR data from GEDI and ICEsat-2, and images of ALOS-2 yearly mosaic L band SAR (Synthetic Aperture Radar), Sentinel-1 C band SAR, Sentinel-2 MSI, and ALOS-1 DSM were combined for pixel- and object-based forest AGB mapping in a vital heterogeneous mountainous forest. For the object-based approach, optimized objects during a multiresolution segmentation were acquired by the ESP (Estimation of the Scale Parameter) tool, and suitable predictors were selected using an algorithm named VSURF (Variable Selection Using Random Forests). The LiDAR variables at the footprint-level were extracted to connect field plots to the multi-sensor objects as a linear bridge. It was shown that forests’ AGB values varied by elevations with a mean value of 142.58 Mg/ha, ranging from 12.61 to 514.28 Mg/ha. The north slope with the lowest elevation (<1100 m) had the largest mean AGB, while the smallest mean AGB was located in the south slope with the altitude above 2000 m. Using independent validation samples, it was indicated by the accuracy comparison that the object-based approach performed better on the precision with relative improvement based on root-mean-square errors (RIRMSE) of 4.46%. The object-based approach also selected more optimized predictors and markedly decreased the prediction time than the pixel-based analysis. Canopy cover and height explained forest AGB with their effects on biomass varying according to the elevation. The elevation from DSM and variables involved in red-edge bands from MSI were the most contributive predictors in heterogeneous temperate forests. This study is a pioneering exploration of object-based AGB mapping by combining satellite data from LiDAR, MSI, and SAR, which offers an improved methodology for regional carbon mapping in the heterogeneous mountainous forests.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3