Analysis of the hyperparameter optimisation of four machine learning satellite imagery classification methods

Author:

Alonso-Sarría Francisco,Valdivieso-Ros Carmen,Gomariz-Castillo FranciscoORCID

Abstract

AbstractThe classification of land use and land cover (LULC) from remotely sensed imagery in semi-arid Mediterranean areas is a challenging task due to the fragmentation of the landscape and the diversity of spatial patterns. Recently, the use of deep learning (DL) for image analysis has increased compared to commonly used machine learning (ML) methods. This paper compares the performance of four algorithms, Random Forest (RF), Support Vector Machine (SVM), Multilayer Perceptron (MLP) and Convolutional Network (CNN), using multi-source data, applying an exhaustive optimisation process of the hyperparameters. The usual approach in the optimisation process of a LULC classification model is to keep the best model in terms of accuracy without analysing the rest of the results. In this study, we have analysed such results, discovering noteworthy patterns in a space defined by the mean and standard deviation of the validation accuracy estimated in a 10-fold cross validation (CV). The point distributions in such a space do not appear to be completely random, but show clusters of points that facilitate the discovery of hyperparameter values that tend to increase the mean accuracy and decrease its standard deviation. RF is not the most accurate model, but it is the less sensitive to changes in hyperparameters. Neural Networks, tend to increase commission and omission errors of the less represented classes because their optimisation lead the model to learn better the most frequent classes. On the other hand, RF and MLP prediction layers are the most accurate from a general qualitative point of view.

Funder

Agencia Estatal de Investigación

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3