Quantitative Monitoring of Leaf Area Index in Rice Based on Hyperspectral Feature Bands and Ridge Regression Algorithm

Author:

Ji Shu,Gu Chen,Xi XiaoboORCID,Zhang Zhenghua,Hong Qingqing,Huo Zhongyang,Zhao Haitao,Zhang Ruihong,Li Bin,Tan Changwei

Abstract

Leaf area index (LAI) is one of the indicators measuring the growth of rice in the field. LAI monitoring plays an important role in ensuring the stable increase of grain yield. In this study, the canopy reflectance spectrum of rice was obtained by ASD at the elongation, booting, heading and post-flowering stages of rice, and the correlations between the original reflectance (OR), first-derivative transformation (FD), reciprocal transformation (1/R), and logarithmic transformation (LOG) with LAI were analyzed. Characteristic bands of spectral data were then selected based on the successive projections algorithm (SPA) and Pearson correlation. Moreover, ridge regression (RR), partial least squares (PLS), and multivariate stepwise regression (MSR) were conducted to establish estimation models based on characteristic bands and vegetation indices. The research results showed that the correlation between canopy spectrum and LAI was significantly improved after FD transformation. Modeling using SPA to select FD characteristic bands performed better than using Pearson correlation. The optimal modeling combination was FD-SPA-VI-RR, with the coefficient of determination (R2) of 0.807 and the root-mean-square error (RMSE) of 0.794 for the training set, R2 of 0.878 and RMSE of 0.773 for the validation set 1, and R2 of 0.705 and RMSE of 1.026 for the validation set 2. The results indicated that the present model may predict the rice LAI accurately, meeting the requirements of large-scale statistical monitoring of rice growth indicators in the field.

Funder

National Natural Science Foundation of China

Key Research Program of Jiangsu Province, China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3