Abstract
Leaf area index (LAI) is one of the indicators measuring the growth of rice in the field. LAI monitoring plays an important role in ensuring the stable increase of grain yield. In this study, the canopy reflectance spectrum of rice was obtained by ASD at the elongation, booting, heading and post-flowering stages of rice, and the correlations between the original reflectance (OR), first-derivative transformation (FD), reciprocal transformation (1/R), and logarithmic transformation (LOG) with LAI were analyzed. Characteristic bands of spectral data were then selected based on the successive projections algorithm (SPA) and Pearson correlation. Moreover, ridge regression (RR), partial least squares (PLS), and multivariate stepwise regression (MSR) were conducted to establish estimation models based on characteristic bands and vegetation indices. The research results showed that the correlation between canopy spectrum and LAI was significantly improved after FD transformation. Modeling using SPA to select FD characteristic bands performed better than using Pearson correlation. The optimal modeling combination was FD-SPA-VI-RR, with the coefficient of determination (R2) of 0.807 and the root-mean-square error (RMSE) of 0.794 for the training set, R2 of 0.878 and RMSE of 0.773 for the validation set 1, and R2 of 0.705 and RMSE of 1.026 for the validation set 2. The results indicated that the present model may predict the rice LAI accurately, meeting the requirements of large-scale statistical monitoring of rice growth indicators in the field.
Funder
National Natural Science Foundation of China
Key Research Program of Jiangsu Province, China
Priority Academic Program Development of Jiangsu Higher Education Institutions
Subject
General Earth and Planetary Sciences
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献