Dynamic Characteristics of Canopy and Vegetation Water Content during an Entire Maize Growing Season in Relation to Spectral-Based Indices

Author:

Zhou Huailin,Zhou GuangshengORCID,Song Xingyang,He Qijin

Abstract

A variety of spectral vegetation indices (SVIs) have been constructed to monitor crop water stress. However, their abilities to reflect dynamic canopy water content (CWC) and vegetation water content (VWC) during the growing season have not been concurrently examined, and the underlying mechanisms remain unclear, especially in relation to soil drying. In this study, a field experiment was conducted and designed with various irrigation regimes applied during two consecutive growing seasons of maize. The results showed that CWC, VWC, and the SVIs exhibited obvious trends of first increasing and then decreasing within a growing season. In addition, VWC was allometrically related to CWC across the two growing seasons. A linear relationship between the five SVIs and CWC occurred within a certain CWC range (0.01–0.41 kg m−2), while the relationship between these SVIs and VWC was nonlinear. Furthermore, the five SVIs indicated critical values for VWC, and these values were 1.12 and 1.15 kg m−2 for the water index (WI) and normalized difference water index (NDWI), respectively; however, the normalized difference infrared index (NDII), normalized difference vegetation index (NDVI), and optimal soil-adjusted vegetation index (OSAVI) had the same critical value of 0.55 kg m−2. Therefore, in comparison to the NDII, NDVI, and OSAVI, the WI and NDWI better reflected the crop water content based on their sensitives to CWC and VWC. Moreover, CWC was the most important direct biotic driver of the dynamics of SVIs, while leaf area index (LAI) was the most important indirect biotic driver. VWC was a critical indirect regulator of WI, NDWI, NDII, and OSAVI dynamics, whereas vegetation dry mass (VDM) was the critical indirect regulator of NDVI dynamics. These findings may provide additional information for estimating agricultural drought and insights on the impact mechanism of soil water deficits on SVIs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3