Accuracy, Efficiency, and Transferability of a Deep Learning Model for Mapping Retrogressive Thaw Slumps across the Canadian Arctic

Author:

Huang LingcaoORCID,Lantz Trevor C.,Fraser Robert H.,Tiampo Kristy F.ORCID,Willis Michael J.,Schaefer Kevin

Abstract

Deep learning has been used for mapping retrogressive thaw slumps and other periglacial landforms but its application is still limited to local study areas. To understand the accuracy, efficiency, and transferability of a deep learning model (i.e., DeepLabv3+) when applied to large areas or multiple regions, we conducted several experiments using training data from three different regions across the Canadian Arctic. To overcome the main challenge of transferability, we used a generative adversarial network (GAN) called CycleGAN to produce new training data in an attempt to improve transferability. The results show that (1) data augmentation can improve the accuracy of the deep learning model but does not guarantee transferability, (2) it is necessary to choose a good combination of hyper-parameters (e.g., backbones and learning rate) to achieve an optimal trade-off between accuracy and efficiency, and (3) a GAN can significantly improve the transferability if the variation between source and target is dominated by color or general texture. Our results suggest that future mapping of retrogressive thaw slumps should prioritize the collection of training data from regions where a GAN cannot improve the transferability.

Funder

CIRES Visiting Fellows Program and the NOAA Cooperative Agreement with CIRES

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3