A Comparison of Satellite Imagery Sources for Automated Detection of Retrogressive Thaw Slumps

Author:

Rodenhizer Heidi1ORCID,Yang Yili1,Fiske Greg1ORCID,Potter Stefano1ORCID,Windholz Tiffany1,Mullen Andrew1ORCID,Watts Jennifer D.1,Rogers Brendan M.1ORCID

Affiliation:

1. Woodwell Climate Research Center, Falmouth, MA 02540, USA

Abstract

Retrogressive thaw slumps (RTS) are a form of abrupt permafrost thaw that can rapidly mobilize ancient frozen soil carbon, magnifying the permafrost carbon feedback. However, the magnitude of this effect is uncertain, largely due to limited information about the distribution and extent of RTS across the circumpolar region. Although deep learning methods such as Convolutional Neural Networks (CNN) have shown the ability to map RTS from high-resolution satellite imagery (≤10 m), challenges remain in deploying these models across large areas. Imagery selection and procurement remain one of the largest challenges to upscaling RTS mapping projects, as the user must balance cost with resolution and sensor quality. In this study, we compared the performance of three satellite imagery sources that differed in terms of sensor quality and cost in predicting RTS using a Unet3+ CNN model and identified RTS characteristics that impact detectability. Maxar WorldView imagery was the most expensive option, with a ground sample distance of 1.85 m in the multispectral bands (downloaded at 4 m resolution). Planet Labs PlanetScope imagery was a less expensive option with a ground sample distance of approximately 3.0–4.2 m (downloaded at 3 m resolution). Although PlanetScope imagery was downloaded at a higher resolution than WorldView, the radiometric footprint is around 10–12 m, resulting in less crisp imagery. Finally, Sentinel-2 imagery is freely available and has a 10 m resolution. We used 756 RTS polygons from seven sites across Arctic Canada and Siberia in model training and 63 RTS polygons in model testing. The mean IoU of the validation and testing data sets were 0.69 and 0.75 for the WorldView model, 0.70 and 0.71 for the PlanetScope model, and 0.66 and 0.68 for the Sentinel-2 model, respectively. The IoU of the RTS class was nonlinearly related to the RTS Area, showing a strong positive correlation that attenuated as the RTS Area increased. The models were better able to predict RTS that appeared bright on a dark background and were less able to predict RTS that had higher plant cover, indicating that bare ground was a primary way the models detected RTS. Additionally, the models performed less well in wet areas or areas with patchy ground cover. These results indicate that all imagery sources tested here were able to predict larger RTS, but higher-quality imagery allows more accurate detection of smaller RTS.

Funder

Heising Simons Foundation

Audacious Project

Publisher

MDPI AG

Reference90 articles.

1. The Arctic Has Warmed Nearly Four Times Faster than the Globe since 1979;Rantanen;Commun. Earth Environ.,2022

2. Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic;Schuur;Annu. Rev. Environ. Resour.,2022

3. Permafrost Carbon Emissions in a Changing Arctic;Miner;Nat. Rev. Earth Environ.,2022

4. The Circumpolar Active Layer Monitoring (Calm) Program: Research Designs and Initial Results;Brown;Polar Geogr.,2000

5. Spatial and Temporal Patterns of Active Layer Thickness at Circumpolar Active Layer Monitoring (CALM) Sites in Northern Alaska, 1995–2000;Hinkel;J. Geophys. Res.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3