Investigating the Performance of Red and Far-Red SIF for Monitoring GPP of Alpine Meadow Ecosystems

Author:

Duan Weina,Liu XinjieORCID,Chen JidaiORCID,Du Shanshan,Liu LiangyunORCID,Jing Xia

Abstract

Alpine meadow ecosystems are extremely vulnerable to climate change and serve an essential function in terrestrial carbon sinks. Accurately estimating their gross primary productivity (GPP) is essential for understanding the global carbon cycle. Solar-induced chlorophyll fluorescence (SIF), as a companion product directly related to plant photosynthesis process, has become an attractive pathway for estimating GPP accurately. To date, the quantitative SIF-GPP relationship in terrestrial ecosystems is not yet clear. Especially, red SIF and far-red SIF present differences in their ability to track GPP under different environmental conditions. In this study, we investigated the performance of SIF at both red and far-red band in monitoring the GPP of an alpine meadow ecosystem based on continuous tower-based observations in 2019 and 2020. The results show that the canopy red SIF (SIFRed) and far-red SIF (SIFFar-red) were both strongly correlated with GPP. SIFRed was comparable to SIFFar-red for monitoring GPP based on comparisons of both half-hourly averaged and daily averaged datasets. Moreover, the relationship between SIFRed and GPP was linearly correlated, while the relationship between SIFFar-red and GPP tended to be nonlinear. At a diurnal scale, dramatic changes in photosynthetically active radiation (PAR), air temperature (Ta), and vapor pressure deficit (VPD) all had effects on the slope of the linear fitted line with zero intercept for SIFRed-GPP and SIFFar-red-GPP, and the effect on the slope of the linear fitted line with zero intercept for SIFFar-red-GPP was obviously stronger than that for SIFRed-GPP. PAR was the dominant factor among the three environmental factors in determining the diurnal variation of the slope of SIF-GPP. At a seasonal scale, the SIFFar-red/GPP was susceptible to PAR, Ta, and VPD, while the SIFRed/GPP remained relatively stable at different levels of Ta and VPD, and it was only weakly affected by PAR, suggesting that SIFRed was more consistent than SIFFar-red with GPP in response to seasonal variations in environmental factors. These results indicate that SIFRed has more potential than SIFFar-red for monitoring the GPP of alpine meadow ecosystems and can also assist researchers in gaining a more comprehensive understanding of the diversity of SIF-GPP relationships in different ecosystems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3