Exploring the Sensitivity of Solar-Induced Chlorophyll Fluorescence at Different Wavelengths in Response to Drought

Author:

Xu Shan123ORCID,Liu Zhigang12ORCID,Han Shuai12ORCID,Chen Zhuang12ORCID,He Xue12,Zhao Huarong45,Ren Sanxue45

Affiliation:

1. State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

2. Beijing Engineering Research Centre for Global Land Remote Sensing Products, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

3. Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China

4. Chinese Academy of Meteorological Sciences, Beijing 100081, China

5. Hebei Gucheng Agricultural Meteorology National Observation and Research Station, Baoding 072656, China

Abstract

Due to the mechanistic coupling between solar-induced chlorophyll fluorescence (SIF) and photosynthesis, SIF has an advantage over greenness-based vegetation indices in detecting drought. Since photosystem I (PSI) contributes very little to red SIF, red SIF is assumed to be more responsive to environmental stress than far-red SIF. However, in addition to affecting photosynthesis, drought also has an impact on vegetation chlorophyll concentration and thus affects the reabsorption process of red SIF. When these responses are entangled, the sensitivity of SIF in the red and far-red regions in response to drought is not yet clear. In this study, we conducted a water stress experiment on maize in the field and measured the upward and downward leaf SIF spectra by a spectrometer assembled with a leaf clip. Simultaneously, leaf-level active fluorescence was measured with a pulse-amplified modulation (PAM) fluorometer. We found that SIF, after normalization by photosynthetically active radiation (PAR) and dark-adapted minimal fluorescence (Fo), is a better estimation of SIF yield. By comparing the wavelength-dependent link between SIF yield and nonphotochemical quenching (NPQ) across the range of 660 to 800 nm, the results show that red SIF and far-red SIF have different sensitivities in response to drought. SIF yield in the far-red region has a strong and stable correlation with NPQ. Drought not only reduces red SIF due to photosynthetic regulation, but it also increases red SIF by reducing chlorophyll content (weakening the reabsorption effect). The co-existence of these two contradictory effects makes the red SIF of leaf level unable to reliably indicate NPQ. In addition, the red:far-red ratio of downward SIF and the ratio between the downward SIF and upward SIF at the red peak can be good indicators of chlorophyll content. These findings can help to interpret SIF variations in remote sensing techniques and fully exploit SIF information in red and far-red regions when monitoring plant water stress.

Funder

Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3