Satellite On-Board Change Detection via Auto-Associative Neural Networks

Author:

Guerrisi GiorgiaORCID,Del Frate Fabio,Schiavon GiovanniORCID

Abstract

The increase in remote sensing satellite imagery with high spatial and temporal resolutions has enabled the development of a wide variety of applications for Earth observation and monitoring. At the same time, it requires new techniques that are able to manage the amount of data stored and transmitted to the ground. Advanced techniques for on-board data processing answer this problem, offering the possibility to select only the data of interest for a specific application or to extract specific information from data. However, the computational resources that exist on-board are limited compared to the ground segment availability. Alternatively, in applications such as change detection, only images containing changes are useful and worth being stored and sent to the ground. In this paper, we propose a change detection scheme that could be run on-board. It relies on a feature-based representation of the acquired images which is obtained by means of an auto-associative neural network (AANN). Once the AANN is trained, the dissimilarity between two images is evaluated in terms of the extracted features. This information can be subsequently turned into a change detection result. This study, which presents one of the first techniques for on-board change detection, yielded encouraging results on a set of Sentinel-2 images, even in light of comparison with a benchmark technique.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementation of the Φsat-2 on board image processing chain;Sensors, Systems, and Next-Generation Satellites XXVII;2023-10-19

2. On-Board Image Compression using Convolutional Autoencoder: Performance Analysis and Application Scenarios;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

3. Monitoring and Detection of Volcanic Activity in Near Real-Time Using Intelligent Distributed Satellite Systems;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

4. Effects of Environmental and Operational Conditions on Structural Health Monitoring and Non-Destructive Testing: A Systematic Review;Buildings;2023-03-30

5. Artificial Intelligence Based On-Board Image Compression for the Φ-Sat-2 Mission;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3