LiDAR Odometry by Deep Learning-Based Feature Points with Two-Step Pose Estimation

Author:

Liu TianyiORCID,Wang Yan,Niu XiaojiORCID,Chang Le,Zhang Tisheng,Liu Jingnan

Abstract

An accurate ego-motion estimation solution is vital for autonomous vehicles. LiDAR is widely adopted in self-driving systems to obtain depth information directly and eliminate the influence of changing illumination in the environment. In LiDAR odometry, the lack of descriptions of feature points as well as the failure of the assumption of uniform motion may cause mismatches or dilution of precision in navigation. In this study, a method to perform LiDAR odometry utilizing a bird’s eye view of LiDAR data combined with a deep learning-based feature point is proposed. Orthographic projection is applied to generate a bird’s eye view image of a 3D point cloud. Thereafter, an R2D2 neural network is employed to extract keypoints and compute their descriptors. Based on those keypoints and descriptors, a two-step matching and pose estimation is designed to keep these feature points tracked over a long distance with a lower mismatch ratio compared to the conventional strategy. In the experiment, the evaluation of the proposed algorithm on the KITTI training dataset demonstrates that the proposed LiDAR odometry can provide more accurate trajectories compared with the handcrafted feature-based SLAM (Simultaneous Localization and Mapping) algorithm. In detail, a comparison of the handcrafted descriptors is demonstrated. The difference between the RANSAC (Random Sample Consensus) algorithm and the two-step pose estimation is also demonstrated experimentally. In addition, the data collected by Velodyne VLP-16 is also evaluated by the proposed solution. The low-drift positioning RMSE (Root Mean Square Error) of 4.70 m from approximately 5 km mileage shown in the result indicates that the proposed algorithm has generalization performance on low-resolution LiDAR.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3