LIDAR-Inertial Real-Time State Estimator with Rod-Shaped and Planar Feature

Author:

Liu HongORCID,Pan Shuguo,Gao Wang,Ma ChunORCID,Jia Fengshuo,Lu Xinyu

Abstract

State estimation and mapping based on Light Detection and Ranging (LIDAR) are important for autonomous systems. Point cloud registration is a crucial module affecting the accuracy and real-time performance of LIDAR simultaneous localization and mapping (SLAM). In this paper, a novel point cloud feature selection for LIDAR-inertial tightly coupled systems is proposed. In the front-end, a point cloud registration is carried out after marking rod-shaped and planar feature information which is different from the existing LIDAR and inertial measurement unit (IMU) integration scheme. This preprocessing method subsequently reduces the outliers. IMU pre-integration outputs high-frequency result and is used to provide the initial value for LIDAR solution. In the scan-to-map module, a computationally efficient graph optimization framework is applied. Moreover, the LIDAR odometry further constrains the IMU states. In the back-end, the optimization based on sliding-window incorporates the LIDAR-inertial measurement and loop closure global constraints to reduce the cumulative error. Combining the front-end and back-end, we propose the low drift and high real-time LIDAR-inertial positioning system. Furthermore, we conducted an exhaustive comparison in open data sequences and real-word experiments. The proposed system outperforms much higher positioning accuracy than the state-of-the-art methods in various scenarios. Compared with the LIO-SAM, the absolute trajectory error (ATE) average RMSE (Root Mean Square Error) in this study increases by 64.45% in M2DGR street dataset (street_01, 04, 07, 10) and 24.85% in our actual scene datasets. In the most time-consuming mapping module of each system, our system runtime can also be significantly reduced due to the front-end preprocessing and back-end graph model.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference36 articles.

1. Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age

2. Low-drift and real-time lidar odometry and mapping

3. A method for registration of 3-D shapes

4. Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite;Geiger;Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition,2012

5. F-LOAM: Fast LiDAR Odometry and Mapping;Wang;Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3