Investigating the Relationship between Air Pollutants and Meteorological Parameters Using Satellite Data over Bangladesh

Author:

Rahman Md Masudur,Shuo Wang,Zhao WeixiongORCID,Xu Xuezhe,Zhang Weijun,Arshad ArfanORCID

Abstract

Understanding of the relationship between air pollutants and meteorological parameters on the regional scale is a prerequisite for setting up air pollution prevention and control strategies; however, there is a lack of methodical investigations, particularly in the context of Bangladesh’s deficiency of information on air pollution. This study represents the first attempt to investigate the relationship between air pollutants (NO2, O3, SO2, and CO) and meteorological parameters over Bangladesh using satellite data (OMI and MOPITT) during the period from 2015 to 2020. Geographically weighted regression (GWR) modelling was utilized to assess the relationship between air pollutants and weather variables. The spatial representation and average values of geographically varying coefficients showed that the column densities of air pollutants were affected by the meteorological parameters. For example, NO2 was positively associated with temperature in most of the studied regions, with an average geographically varying coefficient value of 0.12 Dobson units (DU, 1 DU = 2.687 × 1016 molecules/cm2), indicating that NO2 concentrations increase by 0.12 DU/year with every unit increase in temperature. The sources of NO2 and SO2 in Dhaka were identified through emission inventory analysis, and transportation and industry emissions were the most significant influencing factors for NO2 and SO2, respectively. Temperature and pressure showed a higher degree of relationship with all four air pollutants compared with other parameters. The results and discussion presented in this study can be of benefit for policy makers in developing air pollution control strategies in Bangladesh.

Funder

Chinese Academy of Sciences

National Natural Science Foundation of China

Youth Innovation Promotion Association

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3