Combined Computer-Aided Predictors to Improve the Thermostability of Nattokinase

Author:

Li Yuan1ORCID,Chen Liangqi2,Tang Xiyu2,Zhu Wenhui2,Ma Aixia2,Shi Changyu2,Li Jinyao12ORCID

Affiliation:

1. Institute of Materia Medica, Xinjiang University, Urumqi 830017, China

2. Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China

Abstract

Food-derived nattokinase has strong thrombolytic activity and few side effects. In the field of medicine, nattokinase has been developed as an adjuvant drug for the treatment of thrombosis, and nattokinase-rich beverages and health foods have also shown great potential in the field of food development. At present, the poor thermostability of nattokinase limits its industrial production and application. In this study, we used several thermostability-prediction algorithms to predict nattokinase from Bacillus mojavensis LY-06 (AprY), and screened two variants S33T and T174V with increased thermostability and fibrinolytic activity. The t1/2 of S33T and T174V were 8.87-fold and 2.51-fold those of the wild type AprY, respectively, and their enzyme activities were also increased (1.17-fold and 1.28-fold, respectively). Although the thermostability of N218L was increased by 2.7 times, the fibrinolytic activity of N218L was only 73.3% of that of wild type AprY. The multiple-point mutation results showed that S33T-N218L and S33T-T174V-N218L variants lost their activity, and the T174V-N218L variant did not show any significant change in catalytic performance, while S33T-T174V increased its thermostability and activity by 21.3% and 24.8%, respectively. Although the S33T-T174V variant did not show the additive effect of thermostability, it combined the excellent transient thermostability of S33T with the better thrombolytic activity of T174V. Bioinformatics analysis showed that the overall structure of S33T and T174V variants tended to be stable, while the structure of S33T-T174V variant was more flexible. Local structure analysis showed that the increased rigidity of the active center region (positions 64–75) and the key loop region (positions 129–130, 155–163, 187–192, 237–241, and 268–270) determined the increased thermostability of all variants. In addition, the enhanced flexibility of S33T-T174V variant in the Ca1 binding region (positions 1–4, 75–82) and the peripheral region of the catalytic pocket (positions 210–216) may account for the inability to superpose its thermostability. We explored the effective strategy to enhance the thermostability of nattokinase, and the resulting variants have potential industrial production and application.

Funder

Science and Technology Department of Xinjiang Uygur Autonomous Region

Tianchi Doctoral Program of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3