Phenotypic and Genotypic Characteristics of Non-Hemolytic L. monocytogenes Isolated from Food and Processing Environments

Author:

Szymczak Barbara1

Affiliation:

1. Department of Applied Microbiology and Human Nutrition Physiology, Faculty of Food Science and Fisheries, West Pomeranian University of Technology, Papieża Pawła VI 3, 71-459 Szczecin, Poland

Abstract

Increasingly, Listeria monocytogenes (LM) with atypical phenotypic and genotypic characteristics are being isolated from food, causing problems with their classification and testing. From 2495 soil, food, and swab samples from the food industry, 262 LM isolates were found. A total of 30 isolates were isolated, mainly from soil and plant food, and were classified as atypical LM (aLM) because they lacked the ability to move (30/11.4%) and perform hemolysis (25/9.5%). The isolation environment affected aLM incidence, cell size, sugar fermentation capacity, antibiotic sensitivity, and the number of virulence genes. Therefore, despite several characteristics differentiating all aLMs/non-hemolytic isolates from reference LMs, the remaining phenotypic characteristics were specific to each aLM isolate (like a fingerprint). The aLM/non-hemolytic isolates, particularly those from the soil and meat industries, showed more variability in their sugar fermentation capacity and were less sensitive to antibiotics than LMs. As many as 11 (36.7%) aLM isolates had resistance to four different antibiotics or simultaneously to two antibiotics. The aLM isolates possessed 3–7 of the 12 virulence genes: prfA and hly in all aLMs, while iap was not present. Only five (16.7%) isolates were classified into serogroups 1/2c-3c or 4a-4c. The aLM/non-hemolytic isolates differed by many traits from L. immobilis and atypical L. innocua. The reference method of reviving and isolating LM required optimization of aLM. Statistical analyses of clustering, correlation, and PCA showed similarities and differences between LM and aLM/non-hemolytic isolates due to individual phenotypic traits and genes. Correlations were found between biochemical traits, antibiotic resistance, and virulence genes. The increase in the incidence of atypical non-hemolytic LM may pose a risk to humans, as they may not be detected by ISO methods and have greater antibiotic resistance than LM. aLM from LM can be distinguished based on lack of hemolysis, motility, growth at 4 °C, ability to ferment D-arabitol, and lack of six specific genes.

Funder

Ministry of Science and Higher Education of Poland

National Science Centre of Poland

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3