Analysis of Phenolic Acids and Flavonoids in Rabbiteye Blueberry Leaves by UPLC-MS/MS and Preparation of Nanoemulsions and Extracts for Improving Antiaging Effects in Mice

Author:

Yu Hsin-Rong1,Chen Bing-Huei12ORCID

Affiliation:

1. Department of Food Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan

2. Department of Nutrition, China Medical University, Taichung 40402, Taiwan

Abstract

Rabbiteye blueberry leaves, a waste produced after harvest of blueberry, are rich in polyphenols. This study aims to analyze phenolic acids and flavonoids in blueberry leaves by UPLC-MS/MS and prepare nanoemulsions for determining anti-aging activity in mice. Overall, 30% ethanol was the most suitable extraction solvent for total phenolic acids and total flavonoids. A total of four phenolic acids and four flavonoids were separated within seven minutes for further identification and quantitation by UPLC-MS/MS in selective reaction monitoring (SRM) mode, with 3-O-caffeoylquinic acid being present in the highest amount (6474.2 μg/g), followed by quercetin-3-O-galactoside (1943.9 μg/g), quercetin-3-O-rutinoside (1036.6 μg/g), quercetin-3-O-glucoside (867.2 μg/g), 5-O-caffeoylquinic acid (815.8 μg/g), kaempferol-3-O-glucoside (309.7 μg/g), 3,5-dicaffeoylquinic acid (195.3 μg/g), and 4,5-dicaffeoylquinic acid (60.8 μg/g). The blueberry nanoemulsion was prepared by using an appropriate ratio of soybean oil, Tween 80, glycerol, ethanol, and water at 1.2%, 8%, 2%, 2%, and 86.8%, respectively, and mixing with dried blueberry extract, with the mean particle size and zeta potential being 16 nm and −54 mV, respectively. A high stability was observed during storage of nanoemulsion for 90 days at 4 °C and heated at 100 °C for 2 h. An animal study revealed that this nanoemulsion could elevate dopamine content in mice brain as well as superoxide dismutase, glutathione peroxidase, and catalase activities in mice liver while reducing the contents of malondialdehyde and protein carbonyl in mice brains. Collectively, the high-dose nanoemulsion possessed the highest efficiency in improving mice aging with a promising potential for development into a health food.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3