Rapid Prediction of Adulteration Content in Atractylodis rhizoma Based on Data and Image Features Fusions from Near-Infrared Spectroscopy and Hyperspectral Imaging Techniques

Author:

Jiang Zhiwei12,Lv Aimin12,Zhong Lingjiao12,Yang Jingjing12,Xu Xiaowei3,Li Yuchan1,Liu Yuchen1,Fan Qiuju1,Shao Qingsong12,Zhang Ailian12

Affiliation:

1. State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China

2. Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China

3. Wenzhou Forestry Technology Promotion and Wildlife Protection Management Station, Wenzhou 325027, China

Abstract

Atractylodis rhizoma (AR) is an herb and food source with great economic, medicinal, and ecological value. Atractylodes chinensis (DC.) Koidz. (AC) and Atractylodes lancea (Thunb.) DC. (AL) are its two botanical sources. The commercial fraud of AR adulterated with Atractylodes japonica Koidz. ex Kitam (AJ) frequently occurs in pursuit of higher profit. To quickly determine the content of adulteration in AC and AL powder, two spectroscopic techniques, near-infrared spectroscopy (NIRS) and hyperspectral imaging (HSI), were introduced. The partial least squares regression (PLSR) algorithm was selected for predictive modeling of AR adulteration levels. Preprocessing and feature variable extraction were used to optimize the prediction model. Then data and image feature fusions were developed to obtain the best predictive model. The results showed that if only single-spectral techniques were considered, NIRS was more suitable for both tasks than HSI techniques. In addition, by comparing the models built after the data fusion of NIRS and HSI with those built by the single spectrum, we found that the mid-level fusion strategy obtained the best models in both tasks. On this basis, combined with the color-texture features, the prediction ability of the model was further optimized. Among them, for the adulteration level prediction task of AC, the best strategy was combining MLF data (at CARS level) and color-texture features (C-TF), at which time the R2T, RMSET, R2P, and RMSEP were 99.85%, 1.25%, 98.61%, and 5.06%, respectively. For AL, the best approach was combining MLF data (at SPA level) and C-TF, with the highest R2T (99.92%) and R2P (99.00%), as well as the lowest RMSET (1.16%) and RMSEP (2.16%). Therefore, combining data and image features from NIRS and HSI is a potential strategy to predict the adulteration content quickly, non-destructively, and accurately.

Funder

Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine

Student Research Training Project of Zhejiang Agricultural and Forestry University

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3