Ginsenoside Rh4 Improves Hepatic Lipid Metabolism and Inflammation in a Model of NAFLD by Targeting the Gut Liver Axis and Modulating the FXR Signaling Pathway

Author:

Yang Siming123,Duan Zhiguang123,Zhang Sen123,Fan Cuiying4,Zhu Chenhui123,Fu Rongzhan123,Ma Xiaoxuan123,Fan Daidi123

Affiliation:

1. Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi’an 710127, China

2. Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China

3. Biotechnology & Biomed, Research Institute, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi’an 710069, China

4. Xi’an Giant Biogene Technology Co., Ltd., No. 20, Zone C, Venture R&D Park, No. 69, Jinye Road, High-tech Zone, Xi’an 710077, China

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a series of disorders of liver metabolism caused by the accumulation of lipids in the liver, which is considered the main cause of hepatocellular carcinoma. Our previous study demonstrated the promising efficacy of ginsenoside Rh4 in improving the intestinal tract and its related metabolites. Meanwhile, many studies in the literature have investigated the gut microbiota and its metabolites, such as bile acids (BAs) and short-chain fatty acids (SCFAs), which play a key role in the pathogenesis of NAFLD. Therefore, this study focused on whether Rh4 could achieve therapeutic effects on NAFLD through the gut–liver axis. The results showed that Rh4 exhibited sound therapeutic effects on the NAFLD model induced by the Western diet and CCl4 in mice. In the liver, the degrees of hepatic steatosis, lobular inflammation levels, and bile acid in the liver tissue were improved after Rh4 treatment. At the same time, Rh4 treatment significantly increased the levels of intestinal SCFAs and BAs, and these changes were accompanied by the complementary diversity and composition of intestinal flora. In addition, correlation analysis showed that Rh4 affected the expression of proteins involved in the farnesoid X receptor (FXR) signaling pathway in the liver and intestine, which modulates hepatic lipid metabolism, inflammation, and proteins related to bile acid regulation. In conclusion, our study provides a valuable insight into how Rh4 targets the gut–liver axis for the development of NAFLD, which indicates that Rh4 may be a promising candidate for the clinical therapy of NAFLD.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

the Key Research and Development Program of Shaanxi

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3