The Effect of Freeze–Thaw Cycles on the Microscopic Properties of Dumpling Wrappers

Author:

Pan Zhili12ORCID,Bai Yibo1,Xu Lina1,Zhang Yanjie1,Lei Mengmeng1,Huang Zhongmin12

Affiliation:

1. College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China

2. National R & D Center for Frozen Rice & Wheat Products Processing Technology, Zhengzhou 450002, China

Abstract

Dumplings are a traditional Chinese food welcomed by Chinese people. Research has indicated that process of quick-frozen wheat cultivars and their gliadins are all related to the quality and shelf-life of dumplings. Therefore, the effect of freeze–thaw cycles on the textural properties and microscopic characteristics of two types of quick-frozen dumpling wrappers (Zhaomai and Wenmai 19) and conformation of their gliadins were investigated. Scanning electron microscopy showed that Wenmai 19 dumpling wrappers had apparent damage after the first cycle, but Zhaomai wrappers did not reveal significant changes until the fourth cycle. The particle size distribution in the starch granules of Wenmai 19 wrappers varied in terms of mechanical damage, but Zhaomai delayed or avoided such effects. FT-IR found a loose protein structure of the gliadins. Differential scanning calorimetry showed that gliadins of Wenmai 19 degenerated more than those of Zhaomai. The crosslinking of gliadin and glutenin maintained a high-quality gluten network, thus protecting the gliadin stability from ice crystals. In turn, the gliadin maintained the strength of the gluten network. Therefore, raw flours with high-quality protein networks are more suitable for frozen dumplings. Freeze–thaw cycles dramatically decreased the textural characteristics of dumpling wrappers and the microscopic characteristics of their gliadin proteins. Concerning wheat cultivars with weak gluten, flours with high-quality protein networks are more suitable as raw materials for frozen dumplings.

Funder

National Key R&D Program of China

Zhengzhou major Science and Technology Innovation Project

National “Twelfth Five-Year” Plan for Science and Technology Support of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3