Antioxidant Activities of Dihydromyricetin Derivatives with Different Acyl Donor Chain Lengths Synthetized by Lipozyme TL IM

Author:

Du Baoshuang12,Wang Shan3,Zhu Song12,Li Yue3ORCID,Huang Dejian4ORCID,Chen Shangwei1

Affiliation:

1. State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China

2. International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China

3. School of Food Science and Technology, Jiangnan University, Wuxi 214122, China

4. Department of Food Science and Technology, National University of Singapore, Singapore 117543, Singapore

Abstract

Dihydromyricetin (DHM) is a phytochemical with multiple bioactivities. However, its poor liposolubility limits its application in the field. In this study, DHM was acylated with different fatty acid vinyl esters to improve its lipophilicity, and five DHM acylated derivatives with different carbon chain lengths (C2-DHM, C4-DHM, C6-DHM, C8-DHM, and C12-DHM) and different lipophilicity were synthesized. The relationship between the lipophilicity and antioxidant activities of DHM and its derivatives was evaluated with oil and emulsion models using chemical and cellular antioxidant activity (CAA) tests. The capacity of DHM derivatives to scavenge 1,1-diphenyl-2-picrylhydrazyl radical (DPPH•) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS+•) was similar to that of DHM, except for C12-DHM. The antioxidant activity of DHM derivatives was lower than that of DHM in sunflower oil, while C4-DHM exhibited better antioxidant capacity in oil-in-water emulsion. In CAA tests, C8-DHM (median effective dose (EC50) 35.14 μmol/L) exhibited better antioxidant activity than that of DHM (EC50: 226.26 μmol/L). The results showed that in different antioxidant models, DHM derivatives with different lipophilicity had various antioxidant activities, which has guiding significance for the use of DHM and its derivatives.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3