Smelling Peppers and Pout Submitted to Convective Drying: Mathematical Modeling, Thermodynamic Properties and Proximal Composition

Author:

Moura Rodrigo Leite1,Figueirêdo Rossana Maria Feitosa de2ORCID,Queiroz Alexandre José de Melo2,Santos Francislaine Suelia dos2ORCID,Lima Antônio Gilson Barbosa de1ORCID,Rego Junior Pedro Francisco do3,Gomes Josivanda Palmeira2ORCID,Silva Wilton Pereira da2ORCID,Paiva Yaroslávia Ferreira1,Moura Henrique Valentim2,Silva Eugênia Telis de Vilela2,Costa Caciana Cavalcanti2,Gregório Mailson Gonçalves2

Affiliation:

1. Department of Process Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil

2. Department of Agricultural Engineering, Federal University of Campina Grande, Campina Grande 58429-900, Brazil

3. Federal Institute of Education, Science and Technology of Ceará, Campus Quixadá, Quixadá 62930-000, Brazil

Abstract

Pepper (Capsicum spp.) is among the oldest and most cultivated crops on the planet. Its fruits are widely used as natural condiments in the food industry for their color, flavor, and pungency properties. Peppers have abundant production; on the other hand, their fruits are perishable, deteriorating within a few days after harvesting. Therefore, they need adequate conservation methods to increase their useful life. This study aimed to mathematically model the drying kinetics of smelling peppers (Capsicum chinense) and pout peppers (Capsicum chinense Jacq.) to obtain the thermodynamic properties involved in the process and to determine the influence of drying on the proximal composition of these peppers. Whole peppers, containing the seeds, were dried in an oven with forced air circulation, at temperatures of 50, 60, 70, and 80 °C, with an air speed of 1.0 m/s. Ten models were adjusted to the experimental data, but the Midilli model was the one that provided the best values of coefficient of determination and lowest values of the mean squared deviation and chi-square value in most of the temperatures under study. The effective diffusivities were well represented by an Arrhenius equation, appearing in the order of 10−10 m2·s−1 for both materials under study, since the activation energy of the smelling pepper was 31.01 kJ·mol−1 and was 30.11 kJ·mol−1 in the pout pepper, respectively. Thermodynamic properties in both processes of drying the peppers pointed to a non-spontaneous process, with positive values of enthalpy and Gibbs free energy and negative values of entropy. Regarding the influence of drying on the proximal composition, it was observed that, with the increase in temperature, there was a decrease in the water content and the concentration of macronutrients (lipids, proteins, and carbohydrates), providing an increase in the energy value. The powders obtained in the study were presented as an alternative for the technological and industrial use of peppers, favoring obtaining a new condiment, rich in bioactives, providing the market with a new option of powdered product that can be consumed directly and even adopted by the industry as a raw material in the preparation of mixed seasonings and in the formulation of various food products.

Funder

FAPESQ-PB/CAPES

Brazilian research agencies

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3