Affiliation:
1. School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China
Abstract
This work presents the fabrication of ternary nanoparticles (Z/S/C NPs) comprising zein (Z), soy protein isolate (SPI) and carboxymethylcellulose sodium (CMC-Na) through a pH-driven method. The results showed that the smallest particle size (71.41 nm) and the most stable zeta potential, measuring −49.97 mV, were achieved with the following ratio of ternary nanoparticles Z/SPI/CMC-Na (2:3:3). The surface morphology of the nanoparticles was further analyzed using transmission electron microscopy, and the synthesized nanoparticles were utilized to encapsulate curcumin (Cur), a hydrophobic, bioactive compound. The nanoparticles were characterized using a particle size analyzer, infrared spectroscopy, and X-ray diffraction (XRD) techniques. The results revealed that the formation of nanoparticles and the encapsulation of Cur were driven by electrostatic, hydrogen-bonding and hydrophobic interactions. The drug loading efficiency (EE%) of Z/S/C-cur nanoparticles reached 90.90%. The Z/S/C ternary nanoparticles demonstrated enhanced storage stability, photostability and simulated the gastrointestinal digestion of Cur. The release of Cur and variations in the particle size of nanoparticles were investigated across different stages of digestion. The biocompatibility of the Z/S/C ternary nanoparticles was assessed by conducting cell viability assays on HepG2 and L-O2 cells, which showed no signs of cytotoxicity. These results suggested that the ternary composite nanoparticles have potential in delivering nutritional foods and health-promoting bioactive substances.
Funder
National Natural Science Foundation of China
Project of Improving the Innovation Ability of Medium and Small-Sized Technology-Based Enterprises in Shandong Province
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献