Microwave-Induced Rapid Shape Change of 4D Printed Vegetable-Based Food

Author:

Chen Xiaohuan12ORCID,Zhang Min13ORCID,Tang Tiantian12

Affiliation:

1. State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China

2. Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi 214122, China

3. China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi 214122, China

Abstract

Microwave heating acts as an environmental stimulus factor to induce rapid shape changes in 4D-printed stereoscopic models over time. The influence of microwave power and model structure on the shape change behavior was explored, and the applicability of the deformed method to other vegetable-based gels was verified. The results described that the G′, G″, η, and proportion of bound water of yam gels increased with the increase in yam powder content, and the yam gel with 40% content had the best printing effect. The IR thermal maps showed the microwaves first gathered in the designed gully region caused the swelling phenomenon, which induced the printed sample to undergo a bird-inspired “spreading of wings” process within 30 s. Increasing the microwave power and microwave heating time were able to increase the bending angles and dehydration rates of the printed samples, thus improving the deformed degree and deformed speed. Different model base thicknesses (4, 6, 8, and 10 mm) also had significant effects on the shape change of the printed structures. The efficiency of the shape changes of 4D-printed structures under microwave induction can be judged by studying the dielectric properties of the materials. In addition, the deformed behaviors of other vegetable gels (pumpkin and spinach) verified the applicability of the 4D deformed method. This study aimed to create 4D-printed food with personalized and rapid shape change behavior, providing a basis for the application scenarios of 4D-printed food.

Funder

National Key R&D Program of China

National Natural Science Foundation Program of China

Jiangsu Province Key Laboratory Project of Advanced Food Manufacturing Equipment and Technology

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3