Dietary Polysaccharides Exert Anti-Fatigue Functions via the Gut-Muscle Axis: Advances and Prospectives

Author:

Zhou Yaping1ORCID,Chu Zhongxing1,Luo Yi2,Yang Feiyan1,Cao Fuliang3ORCID,Luo Feijun1,Lin Qinlu1ORCID

Affiliation:

1. National Engineering Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, China

2. Department of Clinical Medicine, Medical College of Xiangya, Central South University, Changsha 410008, China

3. Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China

Abstract

Due to today’s fast-paced lifestyle, most people are in a state of sub-health and face “unexplained fatigue”, which can seriously affect their health, work efficiency, and quality of life. Fatigue is also a common symptom of several serious diseases such as Parkinson’s, Alzheimer’s, cancer, etc. However, the contributing mechanisms are not clear, and there are currently no official recommendations for the treatment of fatigue. Some dietary polysaccharides are often used as health care supplements; these have been reported to have specific anti-fatigue effects, with minor side effects and rich pharmacological activities. Dietary polysaccharides can be activated during food processing or during gastrointestinal transit, exerting unique effects. This review aims to comprehensively summarize and evaluate the latest advances in the biological processes of exercise-induced fatigue, to understand dietary polysaccharides and their possible molecular mechanisms in alleviating exercise-induced fatigue, and to systematically elaborate the roles of gut microbiota and the gut-muscle axis in this process. From the perspective of the gut-muscle axis, investigating the relationship between polysaccharides and fatigue will enhance our understanding of fatigue and may lead to a significant breakthrough regarding the molecular mechanism of fatigue. This paper will provide new perspectives for further research into the use of polysaccharides in food science and food nutrition, which could help develop potential anti-fatigue agents and open up novel therapies for sub-health conditions.

Funder

the National Key R&D Program of China

the Science and Technology Plan Project of Changsha City, China

the Science and Technology Innovation Platform of Hunan Province, China

the Graduate Innovative Research Project of Hunan Province and Central South University of Forestry and Technology

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3