The Estimation of Chemical Properties of Pepper Treated with Natural Fertilizers Based on Image Texture Parameters

Author:

Ropelewska Ewa1ORCID,Szwejda-Grzybowska Justyna1ORCID

Affiliation:

1. Fruit and Vegetable Storage and Processing Department, The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland

Abstract

The cultivar and fertilization can affect the physicochemical properties of pepper fruit. This study aimed at estimating the content of α-carotene, β-carotene, total carotenoids, and the total sugars of unfertilized pepper and samples treated with natural fertilizers based on texture parameters determined using image analysis. Pearson’s correlation coefficients, scatter plots, regression equations, and coefficients of determination were determined. For red pepper Sprinter F1, the correlation coefficient (R) reached 0.9999 for a texture from color channel B and −0.9999 for a texture from channel Y for the content of α-carotene, −0.9998 (channel a) for β-carotene, 0.9999 (channel a) and −0.9999 (channel L) for total carotenoids, as well as 0.9998 (channel R) and −0.9998 (channel a) for total sugars. The image textures of yellow pepper Devito F1 were correlated with the content of total carotenoids and total sugars with the correlation coefficient reaching −0.9993 (channel b) and 0.9999 (channel Y), respectively. The coefficient of determination (R2) of up to 0.9999 for α-carotene content and the texture from color channel Y for pepper Sprinter F1 and 0.9998 for total sugars and the texture from color channel Y for pepper Devito F1 were found. Furthermore, very high coefficients of correlation and determination, as well as successful regression equations regardless of the cultivar were determined.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3