Insights into Intramuscular Connective Tissue Associated with Wooden Breast Myopathy in Fast-Growing Broiler Chickens

Author:

Zhang Yulong123,Huang Mingyuan123,Shao Xuefei123,Zhang Feiyu123,Li Zhen123,Bai Yun123,Xu Xinglian123,Wang Peng123ORCID,Zhao Tinghui4

Affiliation:

1. College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China

2. Jiangsu Synergetic Innovation Center of Meat Production and Processing, Nanjing 210095, China

3. National Center of Meat Quality and Safety Control, Nanjing 210095, China

4. Ninglang Animal Husbandry Work Instructing Station, Lijiang 674301, China

Abstract

Wooden breast myopathy (WBM) is a meat abnormality affecting pectoralis majors (PMs) of fast-growing broiler chickens. WBM-affected PMs exhibited varied meat qualities with increasing WBM severity. Normal PMs (NOR), mild WBM-affected PMs (MIL), moderate WBM-affected PMs (MOD), and severe WBM-affected PMs (SEV) were selected as raw materials. The structure and organization of connective tissue and fibrillar collagen were investigated through immersing with sodium hydroxide solution, Masson trichrome staining, and using an electron microscope. The mechanical strength of intramuscular connective tissue was analyzed via the shear force of samples treated with sodium hydroxide solution. The thermal property and secondary structure of connective tissue were analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. The obtained connective tissue was dissolved in a sodium hydroxide solution for the evaluation of the physicochemical properties of proteins, including particle size, molecular weight, surface hydrophobicity, and intrinsic fluorescence. In particular, the particle size was measured using a zeta potential instrument. The molecular weight was analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The surface hydrophobicity and intrinsic fluorescence were measured by spectroscopy technology. Histologically, macrophage infiltration, myodegeneration and necrosis, regeneration, fibrous connective tissue, and thickened perimysial connective tissue were observed in WBM-affected PMs, especially SEV with fibrosis, including blood vessels. Compared with NOR, WBM led to increased average diameter of the collagen fibrils in perimysial (36.61 nm of NOR to 69.73 nm of SEV) and endomysial (34.19 nm of NOR to 56.93 nm of SEV) layers. A significant increase (p < 0.05) was observed in the mechanical strength (2.05 N to 5.55 N) of fresh PMs and the thermal transition temperature (onset temperature (TO), 61.53 °C to 67.50 °C; maximum transition temperature (TM), 66.46 °C to 70.18 °C; termination temperature (TE), 77.20 °C to 80.88 °C) of connective tissue from NOR to SEV. Cooking decreased the mechanical strength, and MOD samples showed the highest mechanical strength (1.24 N, p < 0.05), followed by SEV (0.96 N), MIL (0.93 N), and NOR (0.72 N). For proteins in connective tissue, random coil (19.64% to 29.61%, p < 0.0001), particle size (p < 0.05), and surface hydrophobicity (p < 0.05) increased with the decrease in the α-helix (14.61% to 11.54%, p < 0.0001), β-sheet (45.71% to 32.80%, p < 0.0001), and intrinsic fluorescence of proteins from NOR to SEV. The molecular weights of intramuscular connective tissue proteins were in the ranges of >270 kDa, 180–270 kDa, 110–180 kDa, 95–100 kDa, and <15 kDa. Taken together, WBM resulted in thickened organization, tightly packed collagen fibrils, increased mechanical strength and thermal temperature, and increased particle size, surface hydrophobicity, and intrinsic fluorescence of proteins in connective tissue, as the WBM severity increased.

Funder

China Agriculture Research System of MOF and MARA

National Key Research Program of China

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3