In Situ Inactivation of Selected Bacillus Strains in Brewer’s Spent Grain during Fermentation by Lactococcus lactis ATCC 11454—The Possibility of Post-Production Residues Management

Author:

Pokorski Patryk1ORCID,Trząskowska Monika2ORCID

Affiliation:

1. Faculty of Human Nutrition, Warsaw University of Life Sciences (WULS), Nowoursynowska 159C, 02-776 Warsaw, Poland

2. Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS), Nowoursynowska 159C, 02-776 Warsaw, Poland

Abstract

The safety and quality of post-production residues is essential before they can be reused. Both to explore the possibility of reuse as a fermentation medium and the context of pathogens’ inactivation, the research aimed to characterize the fermentation system of L. lactis ATCC 11454 and brewer’s spent grain, malt and barley, especially to in situ inactivation of selected Bacillus strains during the fermentation and storage. Barley products were milled, autoclaved, hydrated and fermented with L. lactis ATCC 11454. Then, the co-fermentation with Bacillus strains was carried out. The amount of polyphenols in the samples ranged from 483.5 to 718.4 ug GAE g−1 and increased after 24 h fermentation with L. lactis ATCC 11454. The high viability of LAB in the fermented samples and after 7 days of storage at 4 °C (8 log CFU g−1) indicates the high nutrients bioavailability during the storage. Also, this co-fermentation on different barley products indicated a high reduction level (2 to 4 logs) of Bacillus due to the biosuppression effect of the LAB strain in this fermentation system. Brewer’s spent grain (BSG) fermented with L. lactis ATCC 25 11454 produces a highly effective cell-free supernatant (CFS) for suppressing Bacillus strains. This was evident in both the inhibition zone and fluorescence analysis of bacteria viability. In conclusion, the obtained results justify the use of brewer’s spent grain in selected food products, increasing their safety and nutritional value. This finding is highly beneficial in the sustainable management of post-production residues when current waste material can still serve as a source of food.

Funder

Institute of Human Nutrition Sciences

European Union from the European Regional Development Fund

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference66 articles.

1. Barley-Based Probiotic Food Mixture: Health Effects and Future Prospects;Sharma;Crit. Rev. Food Sci. Nutr.,2021

2. Livestock Policy for Sustainable Development;Mehrabi;Nat. Food,2020

3. Human and Planetary Health: Towards a Common Language;Demaio;Lancet,2015

4. Food and Agriculture Organisation (2016). Food and Agriculture-Key to Achieving the 2030 Agenda for Sustainable Development, Food and Agriculture.

5. Ultra-Processed Foods and the Nutrition Transition: Global, Regional and National Trends, Food Systems Transformations and Political Economy Drivers;Baker;Obes. Rev.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3