Reduced Washing Cycle for Sustainable Mackerel (Rastrelliger kanagurta) Surimi Production: Evaluation of Bio-Physico-Chemical, Rheological, and Gel-Forming Properties

Author:

Somjid PanumasORCID,Panpipat WorawanORCID,Cheong Ling-Zhi,Chaijan ManatORCID

Abstract

Although dark muscle is currently the most important obstacle in marketing high-quality Indian mackerel (Rastrelliger kanagurta) surimi, reducing washing remains a challenge for long-term surimi production from this species. Herein, the impact of washing cycles (one (W1), two (W2), and three (W3) cycles) with a 1:3 mince to water ratio on the bio-physico-chemical properties, rheology, and gelling ability of mackerel surimi was evaluated. The yield, Ca2+-ATPase activity, TCA-soluble peptide, and myoglobin contents of surimi decreased as the number of washing cycles increased, while lipid removal, reactive SH content, and surface hydrophobicity of surimi increased. Surimi generated by W2 and W3 provided the same rheological patterns and Fourier-transform infrared spectroscopy (FTIR) spectra as unwashed mince, with the highest gel strength and whiteness, as well as the lowest expressible drip, thiobarbituric acid reactive substances (TBARS), and fishy odor. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated the presence of polymerized proteins stabilized by disulfide and other interactions. Using a scanning electron microscope, several concentrated dense areas and distributed pores generated by myofibrillar proteins gel networks were found. Surimi from W2 and W3 appeared to be of similar overall quality, however W2 had a larger yield. As a result of the evaluation of bio-physico-chemical, rheological, and gel-forming capabilities, as well as product yield, W2 may be the best option for producing high-quality surimi from Indian mackerel in a sustainable manner.

Funder

Royal Golden Jubilee (RGJ) Ph.D. Program

Walailak University

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3