Metabolic Effects of Bee Larva-Derived Protein in Mice: Assessment of an Alternative Protein Source

Author:

Yokoyama Yoko,Shinohara Kawori,Kitamura NahoORCID,Nakamura Anna,Onoue Ai,Tanaka Kazuki,Hirayama AkiyoshiORCID,Aw Wanping,Nakamura Shigeru,Ogawa Yoko,Fukuda ShinjiORCID,Tsubota KazuoORCID,Watanabe Mitsuhiro

Abstract

Food crises caused by growing global population or environmental changes are predicted in the near future; therefore, sustainable solutions are needed. Edible insects, which are rich in protein and can save feed and environmental resources, have the potential to be a sustainable alternative protein source. However, there is limited evidence on the impact on health. In this study, we investigated the biological effects of ingesting bee larva by examining their effects on amino acid, lipid, and glucose metabolism in animal models. In our animal experiments, the replacement of casein as a protein source, with edible insects, did not seem to cause any deficiency in murine amino acid levels in the plasma and liver. Metabolomic analysis of plasma metabolites showed decreased 3-methylhistidine and increased nicotinamide in the bee larva-derived protein-fed mice. Decreased levels of plasma 3-metylhistidine, an indicator of muscle degradation, implies that replacement to bee-larva protein from casein did not cause muscle degradation in vivo. We further investigated effects of increased plasma nicotinamide on peripheral tissue and found an increase in expression levels of genes involved in glucose uptake in muscle and thermogenesis in adipose tissue. These data imply that bee larva is a potential sustainable, safe and healthy alternative protein source.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Japan Science and Technology Agency

Takeda Science Foundation

Food Science Institute Foundation

Program for the Advancement of Research in Core Projects under Keio University’s Longevity Initiative

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3